TccP2-mediated subversion of actin dynamics by EPEC 2 – a distinct evolutionary lineage of enteropathogenic Escherichia coli

نویسندگان

  • Andrew D. Whale
  • Rodrigo T. Hernandes
  • Tadasuke Ooka
  • Lothar Beutin
  • Stephanie Schüller
  • Junkal Garmendia
  • Lynette Crowther
  • Mônica A. M. Vieira
  • Yoshitoshi Ogura
  • Gladys Krause
  • Alan D. Phillips
  • Tania A. T. Gomes
  • Tetsuya Hayashi
  • Gad Frankel
چکیده

Enteropathogenic Escherichia coli (EPEC) is a major cause of infantile diarrhoea in developing countries. While colonizing the gut mucosa, EPEC triggers extensive actin-polymerization activity at the site of intimate bacterial attachment, which is mediated by avid interaction between the outer-membrane adhesin intimin and the type III secretion system (T3SS) effector Tir. The prevailing dogma is that actin polymerization by EPEC is achieved following tyrosine phosphorylation of Tir, recruitment of Nck and activation of neuronal Wiskott-Aldrich syndrome protein (N-WASP). In closely related enterohaemorrhagic E. coli (EHEC) O157 : H7, actin polymerization is triggered following recruitment of the T3SS effector TccP/EspF(U) (instead of Nck) and local activation of N-WASP. In addition to tccP, typical EHEC O157 : H7 harbour a pseudogene (tccP2). However, it has recently been found that atypical, sorbitol-fermenting EHEC O157 carries functional tccP and tccP2 alleles. Interestingly, intact tccP2 has been identified in the incomplete genome sequence of the prototype EPEC strain B171 (serotype O111 : H-), but it is missing from another prototype EPEC strain E2348/69 (O127 : H7). E2348/69 and B171 belong to two distinct evolutionary lineages of EPEC, termed EPEC 1 and EPEC 2, respectively. Here, it is reported that while both EPEC 1 and EPEC 2 triggered actin polymerization via the Nck pathway, tccP2 was found in 26 of 27 (96.2 %) strains belonging to EPEC 2, and in none of the 34 strains belonging to EPEC 1. It was shown that TccP2 was: (i) translocated by the locus of enterocyte effacement-encoded T3SS; (ii) localized at the tip of the EPEC 2-induced actin-rich pedestals in infected HeLa cells and human intestinal in vitro organ cultures ex vivo; and (iii) essential for actin polymerization in infected Nck-/- cells. Therefore, unlike strains belonging to EPEC 1, strains belonging to EPEC 2 can trigger actin polymerization using both Nck and TccP2 actin-polymerization signalling cascades.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enteropathogenic Escherichia coli O125:H6 triggers attaching and effacing lesions on human intestinal biopsy specimens independently of Nck and TccP/TccP2.

Typical enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) employ either Nck, TccP/TccP2, or Nck and TccP/TccP2 pathways to activate the neuronal Wiskott-Aldrich syndrome protein (N-WASP) and to trigger actin polymerization in cultured cells. This phenotype is used as a marker for the pathogenic potential of EPEC and EHEC strains. In this paper we report that EPEC O12...

متن کامل

Exploitation of host cells by enteropathogenic Escherichia coli.

Microbial pathogens have evolved many ingenious ways to infect their hosts and cause disease, including the subversion and exploitation of target host cells. One such subversive microbe is enteropathogenic Escherichia coli (EPEC). A major cause of infantile diarrhea in developing countries, EPEC poses a significant health threat to children worldwide. Central to EPEC-mediated disease is its col...

متن کامل

Role for CD2AP and other endocytosis-associated proteins in enteropathogenic Escherichia coli pedestal formation.

Enteropathogenic Escherichia coli (EPEC) strains are extracellular pathogens that generate actin-rich structures (pedestals) beneath the adherent bacteria as part of their virulence strategy. Pedestals are hallmarks of EPEC infections, and their efficient formation in vitro routinely requires phosphorylation of the EPEC effector protein Tir at tyrosine 474 (Y474). This phosphorylation results i...

متن کامل

Lactoferrin impairs type III secretory system function in enteropathogenic Escherichia coli.

Enteropathogenic Escherichia coli (EPEC) is an important cause of infant diarrhea in developing countries. EPEC uses a type III secretory system to deliver effector proteins into the host cell. These proteins cause the characteristic attaching and effacing lesion on enterocytes. Lactoferrin, a glycoprotein present in human milk, inhibits EPEC adherence to mammalian cells. To determine the effec...

متن کامل

Mechanism and Function of Actin Pedestal Formation by Enterohemorrhagic Escherichia coli O157:H7: A Dissertation

Enterohemorrhagic Escherichia coli O157:H7 (EHEC) and enteropathogenic E. coli O127:H7 (EPEC) induce characteristic F-actin rich pedestals on infected mammalian cells. Each pathogen delivers its own translocated intimin receptor (Tir) to the host cell to act as a receptor for the bacterial outer membrane adhesin, intimin. Interaction of translocated Tir with intimin is essential for mammalian c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 153  شماره 

صفحات  -

تاریخ انتشار 2007